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1.   INTRODUCTION 

In this work, we consider second order partial differential equations of the form 

 

𝑦𝑥𝑥 = 𝑓(𝑥, 𝑡, 𝑦, 𝑦𝑡, 𝑦𝑡𝑡)                                                                 (1) 

 

With appropriate initial-boundary conditions and the second order ordinanry differential equations of the form 

 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′)                                                                    (2) 

Subject to any of the boundary conditions 

 

{

𝑦(𝑎) = 𝛼0, 𝑦
 (𝑏) = 𝛽0

𝑦(𝑎) = 𝛼0, 𝑦
 ′(𝑏) = 𝛽1

𝑦′(𝑎) = 𝛼1, 𝑦
 (𝑏) = 𝛽0

𝑦𝑡𝑡)                                                          (3) 

 

Where 𝑥 ∈ (𝑎, 𝑏), 𝑦 ∈ 𝐶2[𝑎, 𝑏],with 𝑎, 𝑏, 𝛼𝑖𝛽𝑖 ∈ 𝑅 for 𝑖 = 0,1. For the purpose of existence and uniqueness of 𝑦, we assume that the 

function 𝑓 is a continuous function that satisfy a Lipschitz condition subject to the above initial and boundary conditions, and by extention a 

contraction map.  

No doubt that second order Partial and ordinary differential equation finds its applications in many spheres of human endevours, 

these includes but not limited to particles diffusions, motions of a body, oscillations, electricity, population dynamics, finance and so on.  

Second order differential equations in most cases have no closed (analytic) solutions especially nonlinear ones, ence the need for numerical 

approximations of the solutions. 

Numerical techniques are numerous and the types know no bounds .They include ;The Euler method, Runge-Kutta methods, linear 

Multistep method, shooting method, Finite difference method, finite element methods, e.g Galerkin method, Spectral element method. Other 

methods are; Spectral method base on Fourier transformation; Method of lines reduces the PDE to a large system of ordinary differential 

equation (ODE) Boundary Element Method (BEM) based on transforming a PDE to an integral equation on the boundary of the domains and 

it is popular in computational fluid dynamics, the list is endless.  

Authors who have worked extensively on numerical mrethods for approximation of solution of a differential equation include but 

not limited to [1-7].  

In this work, we consider the solution of second order differential equations by deriving linear multistep methods via the 

interpolation/collocation technique. These linear multistep methods are unified to form a single block which is then applied directly for 

solution of second order BVPs. In other to solve second order PDEs, the PDEs are semi-dicretized to form a system of second order ODEs 

A ninth order numerical scheme is develped in this work to directly solve second order 
initial and boundary value problems and via the method of lines for the semi-
descritization and solution for second order partial differential equations. These schemes 
are developed via the collocation technique and unified to form a single block of hybrid 
integrators. The derived method is investigated for its consistency, zero-stability and 
convergence and found to satisfy these characteristics. Numerical examples shows that 
the derived method is fond to be efficient in terms of implimentation and less computer 
time and in terms of accuracy when compared to existing methods in literature. 
. 
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and then the resulting systems are solve with the derived block method. For more on this approach see, [5,8]. 

 

3.2  Derivation of the Method 

 

A 2-step block methods for the problem of the form (2) with conditions (3) is considered. 

Consider the grid points given by 𝑥𝑛, 𝑥𝑛+1 = 𝑥𝑛 + ℎ, 𝑥𝑛+2 = 𝑥𝑛 + 2ℎ, for solving the problem in (2) on the interval [𝑥𝑛, 𝑥𝑛+2]. We assume 

a trial solution 𝑦(𝑥) of (2) by a polynomial 𝑝(𝑥) given by 
 

 𝑦(𝑥) ≃ 𝑝(𝑥) = ∑𝑟+𝑠−1𝑖=0 𝑎𝑖𝑥
𝑖                                                     (4) 

 

which on differentiating yields  

 
 𝑦′′(𝑥) ≃ 𝑝′′(𝑥) = ∑𝑟+𝑠−1𝑖=2 𝑖(𝑖 − 1)𝑎𝑖𝑥

𝑖−2                                              (5) 

with the 𝑎𝑖 ∈ ℝ real unknown parameters to be determined. 𝑟 is the number of interpolation points and 𝑠 is the number of collocation 

points. 

 

 

2.1  Specification of the method 

 

In this work the interval of integration considered is [𝑥𝑛 , 𝑥𝑛+2], we thus consider the off-set points 𝑥𝑖
4

, for 𝑖 = 0(1)8. Interpolating (4) at the 

points 𝑥𝑛+𝑖, for 𝑖 =
1

4
,
3

4
, implies 𝑟 = 2 and collocating (5) at points 𝑥𝑖

4

, for 𝑖 = 0(1)𝟖 implies 𝒔 = 𝟗 so that (4) and (5) becomes  

 

 𝑦(𝑥) ≃ 𝑝(𝑥) = ∑10𝑖=0 𝑎𝑖𝑥
𝑖 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯+ 𝑎10𝑥
10                              (6) 

 

which on differentiating yields  

 
 𝑦′′(𝑥) ≃ 𝑝′′(𝑥) = ∑8𝑖=2 𝑖(𝑖 − 1)𝑎𝑖𝑥

𝑖−2 = 2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥
2 +⋯+ 90𝑎10𝑥

8          (7) 

 
From the imposed collocation condition, the following system of algebraic equation is obtained  

 

 A =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 𝑥1
4

𝑥1
4

2 𝑥1
4

3 𝑥1
4

4 𝑥1
4

5 𝑥1
4

6 𝑥1
4

7 𝑥1
4

8 𝑥1
4

9 𝑥1
4

10

1 𝑥3
4

𝑥3
4

2 𝑥3
4

3 𝑥3
4

4 𝑥3
4

5 𝑥3
4

6 𝑥3
4

7 𝑥3
4

8 𝑥3
4

9 𝑥3
4

10

0 0 2 6𝑥0 12𝑥0
2 20𝑥0

3 30𝑥0
4 42𝑥0

5 56𝑥0
6 72𝑥0

7 90𝑥0
8

0 0 2 6𝑥1
4

12𝑥1
4

2 20𝑥1
4

3 30𝑥1
4

4 42𝑥1
4

5 56𝑥1
4

6 72𝑥1
4

7 90𝑥1
4

8

0 0 2 6𝑥1
2

12𝑥1
2

2 20𝑥1
2

3 30𝑥1
2

4 42𝑥1
2

5 56𝑥1
2

6 72𝑥1
2

7 90𝑥1
2

8

0 0 2 6𝑥3
4

12𝑥3
4

2 20𝑥3
4

3 30𝑥3
4

4 42𝑥3
4

5 56𝑥3
4

6 72𝑥3
4

7 90𝑥3
4

8

0 0 2 6𝑥1 12𝑥1
2 20𝑥1

3 30𝑥1
4 42𝑥1

5 56𝑥1
6 72𝑥1

7 90𝑥1
8

0 0 2 6𝑥5
4

12𝑥5
4

2 20𝑥5
4

3 30𝑥5
4

4 42𝑥5
4

5 56𝑥5
4

6 72𝑥5
4

7 90𝑥5
4

8

0 0 2 6𝑥3
2

12𝑥3
2

2 20𝑥3
2

3 30𝑥3
2

4 42𝑥3
2

5 56𝑥3
2

6 72𝑥3
2

7 90𝑥3
2

8

0 0 2 6𝑥7
4

12𝑥7
4

2 20𝑥7
4

3 30𝑥7
4

4 42𝑥7
4

5 56𝑥7
4

6 72𝑥7
4

7 90𝑥7
4

8

0 0 2 6𝑥2 12𝑥2
2 20𝑥2

3 30𝑥2
4 42𝑥2

5 56𝑥2
6 72𝑥2

7 90𝑥2
8

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑥 =

(

 
 
 
 
 
 
 
 
 

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8
𝑎9
𝑎10

)

 
 
 
 
 
 
 
 
 

;    𝑏 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑦
𝑛+

1

4

𝑦
𝑛+

3

4

𝑓𝑛
𝑓
𝑛+

1

4

𝑓
𝑛+

1

2

𝑓
𝑛+

3

4

𝑓𝑛+1
𝑓
𝑛+

5

4

𝑓
𝑛+

3

2

𝑓
𝑛+

7

4

𝑓𝑛+2
)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

𝑒 = (1, 𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10)𝑇 

Where y𝑛+𝑘 ≈ 𝑦(𝑥𝑛+𝑘) = 𝑦(𝑥𝑛) + ℎ, 𝑓𝑛+𝑘 ≈ 𝑓(𝑥𝑛+𝑘 , 𝑦𝑛+𝑘 , 𝑦′𝑛+𝑘). Hence, we state the following theorem without proof.  

 

Theorem 2.1 [8]. Let (6) and (7) be satisfied, then the 2-step continuous linear hybrid multistep method is equivalent to the equation  
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𝑦(𝑥) = 𝑏𝑇(A𝑘
−1)𝑇𝑒 (8) 

where 𝑏, A and 𝑒 are as defined above.  

 

Now, invoking Theorem 2.1 and applying it, the following continuous hybrid method is derived 

𝑦(𝑥) = ∑2𝑖=1 𝛼2𝑖−1
4

𝑦
𝑛+

2𝑖−1

4

+ ℎ2∑2𝑖=0 𝛽𝑖
4

𝑓
𝑛+

𝑖

4

                                       (9) 

 
where 𝛼 and 𝛽 are function of 𝑡 given as 

𝛼1
4

=
1

2
(3 − 4𝑡)

𝛼3
4

=
1

2
(−1 + 4𝑡)

𝛽0 =
1

116121600
ℎ2(1 + 4𝑡)(3 + 4𝑡)(−2229 − 1128𝑡 + 17904𝑡2 + 2688𝑡3 − 155904𝑡4

+215040𝑡5+86016𝑡6 − 294912𝑡7 + 131072𝑡8)

𝛽1
4

= −
1

29030400
ℎ2(1 + 4𝒕)(𝟑 + 𝟒𝒕)(−𝟐𝟑𝟏𝟖𝟑 + 𝟏𝟗𝟓𝟎𝟖𝒕 + 𝟏𝟗𝟔𝟎𝟎𝒕𝟐 + 𝟑𝟕𝟏𝟖𝟒𝒕𝟑

−𝟒𝟔𝟔𝟔𝟖𝟖𝒕𝟒 + 𝟕𝟒𝟐𝟒𝟎𝟎𝒕𝟓−𝟗𝟒𝟐𝟎𝟖𝒕𝟔 − 𝟓𝟎𝟕𝟗𝟎𝟒𝒕𝟕 + 𝟐𝟔𝟐𝟏𝟒𝟒𝒕𝟖)

𝜷𝟏

𝟐

=
𝟏

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(𝟑𝟏𝟕𝟒𝟔𝟕 − 𝟒𝟖𝟗𝟎𝟐𝟖𝒕 + 𝟗𝟏𝟒𝟗𝟗𝟐𝒕𝟐 − 𝟗𝟖𝟏𝟓𝟔𝟖𝒕𝟑

−𝟗𝟑𝟓𝟏𝟔𝟖𝒕𝟒 + 𝟐𝟗𝟓𝟒𝟐𝟒𝟎𝒕𝟓 − 𝟏𝟎𝟕𝟕𝟐𝟒𝟖𝒕𝟔 − 𝟏𝟒𝟗𝟎𝟗𝟒𝟒𝒕𝟕 + 𝟗𝟏𝟕𝟓𝟎𝟒𝒕𝟖)

𝜷𝟑

𝟒

= −
𝟏

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(−𝟒𝟗𝟗𝟕𝟔𝟏 + 𝟐𝟒𝟔𝟖𝟓𝟐𝒕 + 𝟏𝟑𝟒𝟖𝟖𝟒𝟖𝒕𝟐 − 𝟑𝟑𝟒𝟗𝟒𝟒𝟎𝒕𝟑

+𝟑𝟒𝟕𝟗𝟎𝟒𝒕𝟒 + 𝟓𝟓𝟏𝟒𝟐𝟒𝟎𝒕𝟓−𝟑𝟐𝟖𝟎𝟖𝟗𝟔𝒕𝟔 − 𝟐𝟒𝟎𝟖𝟒𝟒𝟖𝒕𝟕 + 𝟏𝟖𝟑𝟓𝟎𝟎𝟖𝒕𝟖)

𝜷𝟏 =
𝟏

𝟏𝟏𝟔𝟏𝟐𝟏𝟔𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(𝟑𝟎𝟗𝟔𝟓 + 𝟑𝟒𝟐𝟏𝟔𝟎𝒕 − 𝟓𝟒𝟔𝟒𝟎𝒕𝟐 − 𝟏𝟓𝟑𝟑𝟒𝟒𝟎𝒕𝟑 + 𝟏𝟏𝟐𝟐𝟓𝟔𝟎𝒕𝟒

+𝟐𝟏𝟗𝟏𝟑𝟔𝟎𝒕𝟓−𝟐𝟎𝟏𝟗𝟑𝟐𝟖𝒕𝟔 − 𝟗𝟏𝟕𝟓𝟎𝟒𝒕𝟕 + 𝟗𝟏𝟕𝟓𝟎𝟒𝒕𝟖)

𝜷𝟓

𝟒

= −
𝟏

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(𝟏𝟑𝟏𝟗𝟗 + 𝟏𝟑𝟎𝟓𝟖𝟖𝒕 − 𝟕𝟔𝟔𝟖𝟔𝟒𝒕𝟐 − 𝟏𝟕𝟔𝟕𝟒𝟖𝟖𝒕𝟑

+𝟑𝟏𝟗𝟒𝟔𝟐𝟒𝒕𝟒 + 𝟐𝟖𝟖𝟐𝟓𝟔𝟎𝒕𝟓 − 𝟒𝟒𝟐𝟕𝟕𝟕𝟔𝒕𝟔 − 𝟏𝟐𝟔𝟏𝟓𝟔𝟖𝒕𝟕 + 𝟏𝟖𝟑𝟓𝟎𝟎𝟖𝒕𝟖)

𝜷𝟑

𝟐

=
𝟏

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(𝟑𝟖𝟔𝟕 + 𝟑𝟕𝟔𝟔𝟖𝒕 − 𝟐𝟐𝟏𝟓𝟐𝟎𝒕𝟐 − 𝟑𝟎𝟗𝟔𝟗𝟔𝒕𝟑

+𝟏𝟓𝟒𝟐𝟗𝟏𝟐𝒕𝟒 + 𝟔𝟗𝟏𝟐𝟎𝟎𝒕𝟓−𝟐𝟐𝟐𝟒𝟏𝟐𝟖𝒕𝟔 − 𝟑𝟒𝟒𝟎𝟔𝟒𝒕𝟕 + 𝟗𝟏𝟕𝟓𝟎𝟒𝒕𝟖)

𝜷𝟕

𝟒

= −
𝟏

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(𝟖𝟏𝟕 + 𝟕𝟓𝟑𝟐𝒕 − 𝟒𝟒𝟓𝟐𝟖𝒕𝟐 − 𝟒𝟖𝟒𝟒𝟖𝒕𝟑 + 𝟑𝟑𝟐𝟎𝟑𝟐𝒕𝟒

+𝟑𝟓𝟖𝟒𝟎𝒕𝟓 − 𝟓𝟖𝟓𝟕𝟐𝟖𝒕𝟔 − 𝟏𝟔𝟑𝟖𝟒𝒕𝟕 + 𝟐𝟔𝟐𝟏𝟒𝟒𝒕𝟖)

𝜷𝟐 =
𝟏

𝟏𝟏𝟔𝟏𝟐𝟏𝟔𝟎𝟎
𝒉𝟐(𝟏 + 𝟒𝒕)(𝟑 + 𝟒𝒕)(𝟑𝟑𝟏 + 𝟐𝟖𝟖𝟖𝒕 − 𝟏𝟕𝟏𝟔𝟖𝒕𝟐 − 𝟏𝟔𝟎𝟎𝟎𝒕𝟑 + 𝟏𝟑𝟎𝟖𝟏𝟔𝒕𝟒

−𝟏𝟎𝟐𝟒𝟎𝒕𝟓 − 𝟐𝟒𝟏𝟔𝟔𝟒𝒕𝟔 + 𝟑𝟐𝟕𝟔𝟖𝒕𝟕 + 𝟏𝟑𝟏𝟎𝟕𝟐𝒕𝟖);

                            (10) 

 where 𝑡 =
𝑥−𝑥𝑛

ℎ
, 

 

Evaluating (9) at the points 𝑥 = 𝑥
𝑛+

𝑖

4

 which is equivalent to 𝑡 =
i

4
 for 𝑖 = 0,2,4,5,6,7,8. The following main methods are obtained 
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𝑦𝑛 =
3

2
𝑦
𝑛+

1

4

−
1

2
𝑦
𝑛+

3

4

+ ℎ2 (
155171𝑓𝑛

38707200
+
9421𝑓

𝑛+
1
4

153600
+
144847𝑓

𝑛+
1
2

9676800
+
252101𝑓

𝑛+
3
4

9676800
−
5701𝑓𝑛+1

258048

+
135901𝑓

𝑛+
5
4

9676800
−
56473𝑓

𝑛+
3
2

𝟗𝟔𝟕𝟔𝟖𝟎𝟎
+
𝟒𝟔𝟎𝟏𝒇

𝒏+
𝟕
𝟒

𝟑𝟐𝟐𝟓𝟔𝟎𝟎
−

𝟔𝟎𝟐𝟗𝒇𝒏+𝟐

𝟑𝟖𝟕𝟎𝟕𝟐𝟎𝟎
)

𝒚𝒏+𝟏 = −
𝟏

𝟐
𝒚
𝒏+

𝟏

𝟒

+
𝟑

𝟐
𝒚
𝒏+

𝟑

𝟒

− 𝒉𝟐 (
𝟕𝟒𝟑𝒇𝒏

𝟏𝟐𝟗𝟎𝟐𝟒𝟎𝟎
+
𝟐𝟑𝟏𝟖𝟑𝒇

𝒏+
𝟏
𝟒

𝟗𝟔𝟕𝟔𝟖𝟎𝟎
+
𝟑𝟏𝟕𝟒𝟔𝟕𝒇

𝒏+
𝟏
𝟐

𝟗𝟔𝟕𝟔𝟖𝟎𝟎
+
𝟓𝟓𝟓𝟐𝟗𝒇

𝒏+
𝟑
𝟒

𝟏𝟎𝟕𝟓𝟐𝟎𝟎
+
𝟔𝟏𝟗𝟑𝒇𝒏+𝟏

𝟕𝟕𝟒𝟏𝟒𝟒

−
𝟏𝟑𝟏𝟗𝟗𝒇

𝒏+
𝟓
𝟒

𝟗𝟔𝟕𝟔𝟖𝟎𝟎
+
𝟏𝟐𝟖𝟗𝒇

𝒏+
𝟑
𝟐

𝟑𝟐𝟐𝟓𝟔𝟎𝟎
−

𝟖𝟏𝟕𝒇
𝒏+

𝟕
𝟒

𝟗𝟔𝟕𝟔𝟖𝟎𝟎
+

𝟑𝟑𝟏𝒇𝒏+𝟐

𝟑𝟖𝟕𝟎𝟕𝟐𝟎𝟎
)

𝒚𝒏+𝟐 = −
𝟓

𝟐
𝒚
𝒏+

𝟏

𝟒

+
𝟕

𝟐
𝒚
𝒏+

𝟑

𝟒

− 𝒉𝟐 (
𝟏𝟒𝟓𝟑𝒇𝒏

𝟑𝟑𝟏𝟕𝟕𝟔𝟎
+
𝟏𝟏𝟏𝟒𝟕𝒇

𝒏+
𝟏
𝟒

𝟖𝟐𝟗𝟒𝟒𝟎
+
𝟏𝟑𝟎𝟐𝟒𝟕𝒇

𝒏+
𝟏
𝟐

𝟖𝟐𝟗𝟒𝟒𝟎
+
𝟐𝟒𝟓𝟔𝟗𝟑𝒇

𝒏+
𝟑
𝟒

𝟖𝟐𝟗𝟒𝟒𝟎
+
𝟕𝟗𝟔𝟑𝟕𝒇𝒏+𝟏

𝟑𝟑𝟏𝟕𝟕𝟔

+
𝟏𝟔𝟕𝟕𝟏𝟕𝒇

𝒏+
𝟓
𝟒

𝟖𝟐𝟗𝟒𝟒𝟎
+
𝟗𝟑𝟕𝟒𝟑𝒇

𝒏+
𝟑
𝟐

𝟖𝟐𝟗𝟒𝟒𝟎
+
𝟓𝟔𝟕𝟐𝟑𝒇

𝒏+
𝟕
𝟒

𝟖𝟐𝟗𝟒𝟒𝟎
+
𝟏𝟐𝟖𝟎𝟑𝒇𝒏+𝟐

𝟑𝟑𝟏𝟕𝟕𝟔𝟎
)

𝒚
𝒏+

𝟏

𝟐

=
𝟏

𝟐
𝒚
𝒏+

𝟏

𝟒

+
𝟏

𝟐
𝒚
𝒏+

𝟑

𝟒

+ 𝒉𝟐 (
𝟗𝟖𝟐𝟗𝒇𝒏

𝟏𝟏𝟔𝟏𝟐𝟏𝟔𝟎𝟎
−
𝟖𝟏𝟓𝟑𝟑𝒇

𝒏+
𝟏
𝟒

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
−
𝟕𝟔𝟏𝟎𝟓𝟕𝒇

𝒏+
𝟏
𝟐

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
−
𝟒𝟑𝟏𝟓𝟏𝒇

𝒏+
𝟑
𝟒

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
−
𝟑𝟕𝟓𝟕𝒇𝒏+𝟏

𝟐𝟑𝟐𝟐𝟒𝟑𝟐

+
𝟑𝟒𝟓𝟒𝟗𝒇

𝒏+
𝟓
𝟒

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
−
𝟏𝟒𝟕𝟏𝟕𝒇

𝒏+
𝟑
𝟐

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
+

𝟑𝟔𝟎𝟕𝒇
𝒏+

𝟕
𝟒

𝟐𝟗𝟎𝟑𝟎𝟒𝟎𝟎
−

𝟏𝟓𝟕𝟏𝒇𝒏+𝟐

𝟏𝟏𝟔𝟏𝟐𝟏𝟔𝟎𝟎
)

𝒚
𝒏+

𝟓

𝟒

= −𝒚
𝒏+

𝟏

𝟒

+ 𝟐𝒚
𝒏+

𝟑

𝟒

− 𝒉𝟐 (
𝟏𝟎𝟗𝒇𝒏

𝟗𝟎𝟕𝟐𝟎𝟎
+
𝟏𝟏𝟎𝟑𝒇

𝒏+
𝟏
𝟒

𝟐𝟐𝟔𝟖𝟎𝟎
+
𝟏𝟒𝟕𝟒𝟕𝒇

𝒏+
𝟏
𝟐

𝟐𝟐𝟔𝟖𝟎𝟎
+
𝟑𝟏𝟐𝟕𝒇

𝒏+
𝟑
𝟒

𝟐𝟖𝟑𝟓𝟎
+
𝟏𝟏𝟖𝟗𝒇𝒏+𝟏

𝟏𝟖𝟏𝟒𝟒

+
𝟗𝟕𝟏𝒇

𝒏+
𝟓
𝟒

𝟐𝟐𝟔𝟖𝟎𝟎
+

𝟒𝟕𝒇
𝒏+

𝟑
𝟐

𝟐𝟐𝟔𝟖𝟎𝟎
−

𝟏𝟏𝒇
𝒏+

𝟕
𝟒

𝟏𝟏𝟑𝟒𝟎𝟎
+

𝟏𝟏𝒇𝒏+𝟐

𝟗𝟎𝟕𝟐𝟎𝟎
)

𝒚
𝒏+

𝟑

𝟐

= −
𝟑

𝟐
𝒚
𝒏+

𝟏

𝟒

+
𝟓

𝟐
𝒚
𝒏+

𝟑

𝟒

− 𝒉𝟐 (
𝟏𝟒𝟓𝟑𝒇𝒏

𝟕𝟕𝟒𝟏𝟒𝟒𝟎
+
𝟑𝟏𝟕𝒇

𝒏+
𝟏
𝟒

𝟒𝟑𝟎𝟎𝟖
+
𝟏𝟖𝟕𝟗𝟖𝟏𝒇

𝒏+
𝟏
𝟐

𝟏𝟗𝟑𝟓𝟑𝟔𝟎
+
𝟑𝟐𝟔𝟔𝟓𝟏𝒇

𝒏+
𝟑
𝟒

𝟏𝟗𝟑𝟓𝟑𝟔𝟎
+
𝟑𝟑𝟒𝟎𝟑𝒇𝒏+𝟏

𝟐𝟓𝟖𝟎𝟒𝟖

+
𝟏𝟏𝟔𝟐𝟖𝟕𝒇

𝒏+
𝟓
𝟒

𝟏𝟗𝟑𝟓𝟑𝟔𝟎
+
𝟐𝟓𝟓𝟕𝒇

𝒏+
𝟑
𝟐

𝟑𝟖𝟕𝟎𝟕𝟐
−
𝟑𝟑𝟕𝒇

𝒏+
𝟕
𝟒

𝟔𝟒𝟓𝟏𝟐𝟎
+

𝟑𝟑𝟏𝒇𝒏+𝟐

𝟕𝟕𝟒𝟏𝟒𝟒𝟎
)

𝒚
𝒏+

𝟕

𝟒

= −𝟐𝒚
𝒏+

𝟏

𝟒

+ 𝟑𝒚
𝒏+

𝟑

𝟒

− 𝒉𝟐 (
𝟐𝟑𝒇𝒏

𝟏𝟎𝟎𝟖𝟎𝟎
+
𝟏𝟑𝒇

𝒏+
𝟏
𝟒

𝟏𝟑𝟓𝟎
+
𝟗𝟖𝟒𝟕𝒇

𝒏+
𝟏
𝟐

𝟕𝟓𝟔𝟎𝟎
+
𝟏𝟖𝟖𝟗𝒇

𝒏+
𝟑
𝟒

𝟖𝟒𝟎𝟎
+
𝟏𝟏𝟖𝟗𝒇𝒏+𝟏

𝟔𝟎𝟒𝟖

+
𝟒𝟒𝟗𝟑𝒇

𝒏+
𝟓
𝟒

𝟑𝟕𝟖𝟎𝟎
+
𝟏𝟔𝟒𝟗𝒇

𝒏+
𝟑
𝟐

𝟐𝟓𝟐𝟎𝟎
+
𝟑𝟓𝟑𝒇

𝒏+
𝟕
𝟒

𝟕𝟓𝟔𝟎𝟎
−

𝟐𝟗𝒇𝒏+𝟐

𝟑𝟎𝟐𝟒𝟎𝟎
)

                           (11) 

Differentiating (10) and evaluating the derivative of (9) at the points 𝑥 = 𝑥
𝑛+

𝑖

4

, which is equivalent to 𝑡 =
i

4
 for 𝑖 = 0(1)8, the following 

additional methods are obtained 
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𝑦′𝑛 = −
2𝑦

𝑛+
1
4

ℎ
+
2𝑦

𝑛+
3
4

ℎ
−
149287ℎ𝑓𝑛

2073600
−
44629ℎ𝑓

𝑛+
1
4

115200
+
174373ℎ𝑓

𝑛+
1
2

1451520
−
2378351ℎ𝑓

𝑛+
3
4

7257600
+
629ℎ𝑓𝑛+1

2160

−
1332433ℎ𝑓

𝑛+
5
4

7257600
+
550087𝒉𝒇

𝒏+
𝟑
𝟐

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
−
𝟖𝟗𝟐𝟑𝒉𝒇

𝒏+
𝟕
𝟒

𝟒𝟖𝟑𝟖𝟒𝟎
+
𝟐𝟗𝟏𝟑𝟕𝒉𝒇𝒏+𝟐

𝟏𝟒𝟓𝟏𝟓𝟐𝟎𝟎

𝒚′
𝒏+

𝟏

𝟒

= −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
+
𝟓𝟐𝟏𝒉𝒇𝒏

𝟑𝟎𝟐𝟒𝟎𝟎
−
𝟑𝟔𝟏𝟑𝒉𝒇

𝒏+
𝟏
𝟒

𝟒𝟓𝟑𝟔𝟎
−
𝟒𝟒𝟕𝟎𝟏𝒉𝒇

𝒏+
𝟏
𝟐

𝟐𝟐𝟔𝟖𝟎𝟎
+

𝟏𝟑

𝟐𝟐𝟓
𝒉𝒇

𝒏+
𝟑

𝟒

−
𝟓𝟎𝟑𝟗𝒉𝒇𝒏+𝟏

𝟗𝟎𝟕𝟐𝟎

+
𝟕𝟓𝟐𝟑𝒉𝒇

𝒏+
𝟓
𝟒

𝟐𝟐𝟔𝟖𝟎𝟎
−
𝟏𝟗𝟗𝒉𝒇

𝒏+
𝟑
𝟐

𝟏𝟓𝟏𝟐𝟎
+
𝟑𝟓𝟑𝒉𝒇

𝒏+
𝟕
𝟒

𝟏𝟏𝟑𝟒𝟎𝟎
−
𝟒𝟑𝒉𝒇𝒏+𝟐

𝟏𝟐𝟗𝟔𝟎𝟎

𝒚′
𝒏+

𝟏

𝟐

= −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
−
𝟏𝟕𝟖𝟗𝒉𝒇𝒏

𝟐𝟗𝟎𝟑𝟎𝟒𝟎
+
𝟏𝟎𝟗𝟕𝟏𝟕𝒉𝒇

𝒏+
𝟏
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟑𝟎𝟒𝟕𝒉𝒇

𝒏+
𝟏
𝟐

𝟏𝟏𝟓𝟐𝟎𝟎
−
𝟒𝟓𝟔𝟗𝟒𝟑𝒉𝒇

𝒏+
𝟑
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟏𝟓𝟗𝟕𝒉𝒇𝒏+𝟏

𝟒𝟓𝟑𝟔𝟎

−
𝟗𝟏𝟏𝟗𝒉𝒇

𝒏+
𝟓
𝟒

𝟒𝟖𝟑𝟖𝟒𝟎
+
𝟓𝟏𝟔𝟐𝟑𝒉𝒇

𝒏+
𝟑
𝟐

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
−
𝟏𝟏𝟖𝟔𝟏𝒉𝒇

𝒏+
𝟕
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟖𝟐𝟕𝒉𝒇𝒏+𝟐

𝟒𝟖𝟑𝟖𝟒𝟎𝟎

𝒚′
𝒏+

𝟑

𝟒

= −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
−
𝟏𝟎𝟑𝒉𝒇𝒏

𝟗𝟎𝟕𝟐𝟎𝟎
+
𝟏𝟑𝒉𝒇

𝒏+
𝟏
𝟒

𝟏𝟓𝟕𝟓
+
𝟑𝟏𝟓𝟗𝟕𝒉𝒇

𝒏+
𝟏
𝟐

𝟐𝟐𝟔𝟖𝟎𝟎
+
𝟐𝟔𝟖𝟒𝟑𝒉𝒇

𝒏+
𝟑
𝟒

𝟐𝟐𝟔𝟖𝟎𝟎
−
𝟔𝟕𝟏𝒉𝒇𝒏+𝟏

𝟑𝟎𝟐𝟒𝟎

+
𝟗𝟕𝟏𝒉𝒇

𝒏+
𝟓
𝟒

𝟏𝟏𝟑𝟒𝟎𝟎
−
𝟔𝟎𝟕𝒉𝒇

𝒏+
𝟑
𝟐

𝟐𝟐𝟔𝟖𝟎𝟎
+
𝟒𝟏𝒉𝒇

𝒏+
𝟕
𝟒

𝟕𝟓𝟔𝟎𝟎
−
𝟒𝟕𝒉𝒇𝒏+𝟐

𝟗𝟎𝟕𝟐𝟎𝟎

𝒚′𝒏+𝟏 = −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
−
𝟏𝟔𝟐𝟕𝒉𝒇𝒏

𝟒𝟖𝟑𝟖𝟒𝟎𝟎
+
𝟕𝟖𝟏𝟎𝟏𝒉𝒇

𝒏+
𝟏
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟗𝟎𝟑𝟎𝟗𝟕𝒉𝒇

𝒏+
𝟏
𝟐

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟒𝟎𝟑𝟎𝟗𝒉𝒇

𝒏+
𝟑
𝟒

𝟏𝟔𝟏𝟐𝟖𝟎
+
𝟏𝟏𝟖𝟗𝒉𝒇𝒏+𝟏

𝟗𝟎𝟕𝟐

−
𝟏𝟓𝟎𝟕𝟑𝟕𝒉𝒇

𝒏+
𝟓
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟏𝟒𝟓𝟕𝟑𝒉𝒇

𝒏+
𝟑
𝟐

𝟐𝟒𝟏𝟗𝟐𝟎𝟎
−
𝟖𝟗𝟏𝟕𝒉𝒇

𝒏+
𝟕
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟑𝟒𝟗𝒉𝒇𝒏+𝟐

𝟐𝟗𝟎𝟑𝟎𝟒𝟎

𝒚′
𝒏+

𝟓

𝟒

= −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
−
𝟏𝟒𝟗𝒉𝒇𝒏

𝟗𝟎𝟕𝟐𝟎𝟎
+
𝟐𝟎𝟑𝟗𝒉𝒇

𝒏+
𝟏
𝟒

𝟐𝟐𝟔𝟖𝟎𝟎
+
𝟔𝟕𝟏𝒉𝒇

𝒏+
𝟏
𝟐

𝟓𝟎𝟒𝟎
+
𝟑𝟏𝟐𝟕𝒉𝒇

𝒏+
𝟑
𝟒

𝟏𝟒𝟏𝟕𝟓
+
𝟐𝟓𝟕𝟗𝟑𝒉𝒇𝒏+𝟏

𝟗𝟎𝟕𝟐𝟎

+
𝟖𝟑𝟕𝟕𝒉𝒇

𝒏+
𝟓
𝟒

𝟕𝟓𝟔𝟎𝟎
−
𝟐𝟖𝟕𝒉𝒇

𝒏+
𝟑
𝟐

𝟑𝟐𝟒𝟎𝟎
+
𝟐𝟗𝒉𝒇

𝒏+
𝟕
𝟒

𝟐𝟐𝟔𝟖𝟎
−
𝟑𝟏𝒉𝒇𝒏+𝟐

𝟑𝟎𝟐𝟒𝟎𝟎

𝒚′
𝒏+

𝟑

𝟐

= −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
−

𝟓𝟔𝟏𝟕𝒉𝒇𝒏

𝟏𝟒𝟓𝟏𝟓𝟐𝟎𝟎
+
𝟏𝟖𝟎𝟏𝒉𝒇

𝒏+
𝟏
𝟒

𝟏𝟔𝟏𝟐𝟖𝟎
+
𝟖𝟗𝟓𝟏𝟗𝟑𝒉𝒇

𝒏+
𝟏
𝟐

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟏𝟕𝟗𝟗𝟗𝟓𝟑𝒉𝒇

𝒏+
𝟑
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟑𝟒𝟑𝟏𝒉𝒇𝒏+𝟏

𝟏𝟓𝟏𝟐𝟎

+
𝟑𝟎𝟐𝟖𝟕𝟑𝒉𝒇

𝒏+
𝟓
𝟒

𝟏𝟎𝟑𝟔𝟖𝟎𝟎
+
𝟏𝟓𝟎𝟗𝟕𝟏𝒉𝒇

𝒏+
𝟑
𝟐

𝟏𝟒𝟓𝟏𝟓𝟐𝟎
−
𝟏𝟑𝟓𝟏𝟏𝒉𝒇

𝒏+
𝟕
𝟒

𝟐𝟒𝟏𝟗𝟐𝟎𝟎
+
𝟓𝟖𝟎𝟗𝒉𝒇𝒏+𝟐

𝟏𝟒𝟓𝟏𝟓𝟐𝟎𝟎

𝒚′
𝒏+

𝟕

𝟒

= −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
+

𝒉𝒇𝒏

𝟖𝟔𝟒𝟎
+
𝟏𝟑𝒉𝒇

𝒏+
𝟏
𝟒

𝟐𝟎𝟐𝟓
+
𝟑𝟐𝟓𝟕𝟑𝒉𝒇

𝒏+
𝟏
𝟐

𝟐𝟐𝟔𝟖𝟎𝟎
+
𝟒𝟗𝟑𝟗𝒉𝒇

𝒏+
𝟑
𝟒

𝟐𝟓𝟐𝟎𝟎
+
𝟒𝟏𝟏𝟕𝒉𝒇𝒏+𝟏

𝟏𝟐𝟗𝟔𝟎

+
𝟑𝟖𝟖𝟕𝒉𝒇

𝒏+
𝟓
𝟒

𝟐𝟐𝟔𝟖𝟎
+
𝟐𝟒𝟕𝟔𝟑𝒉𝒇

𝒏+
𝟑
𝟐

𝟕𝟓𝟔𝟎𝟎
+
𝟐𝟎𝟐𝟐𝟕𝒉𝒇

𝒏+
𝟕
𝟒

𝟐𝟐𝟔𝟖𝟎𝟎
−
𝟏𝟕𝟓𝟗𝒉𝒇𝒏+𝟐

𝟗𝟎𝟕𝟐𝟎𝟎

𝒚′𝒏+𝟐 = −
𝟐𝒚

𝒏+
𝟏
𝟒

𝒉
+
𝟐𝒚

𝒏+
𝟑
𝟒

𝒉
−
𝟑𝟐𝟐𝟕𝟑𝒉𝒇𝒏

𝟏𝟒𝟓𝟏𝟓𝟐𝟎𝟎
+
𝟐𝟎𝟑𝟎𝟐𝟗𝒉𝒇

𝒏+
𝟏
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟒𝟒𝟎𝟖𝟏𝒉𝒇

𝒏+
𝟏
𝟐

𝟖𝟎𝟔𝟒𝟎𝟎
+
𝟒𝟐𝟕𝟗𝟒𝟑𝒉𝒇

𝒏+
𝟑
𝟒

𝟏𝟎𝟑𝟔𝟖𝟎𝟎
−
𝟏𝟑𝟏𝟗𝒉𝒇𝒏+𝟏

𝟒𝟓𝟑𝟔𝟎

+
𝟏𝟑𝟒𝟕𝟏𝟕𝟑𝒉𝒇

𝒏+
𝟓
𝟒

𝟐𝟒𝟏𝟗𝟐𝟎𝟎
+
𝟕𝟒𝟗𝟓𝟏𝒉𝒇

𝒏+
𝟑
𝟐

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟐𝟖𝟖𝟎𝟖𝟏𝟏𝒉𝒇

𝒏+
𝟕
𝟒

𝟕𝟐𝟓𝟕𝟔𝟎𝟎
+
𝟒𝟗𝟔𝟏𝟑𝒉𝒇𝒏+𝟐

𝟔𝟗𝟏𝟐𝟎𝟎

                           (12) 

 

The unification of equations (11) and (12) is the required block method that must be applied to solve the required second-order problems. 

 

 

 
3  Analysis of the Method 

 
3.1  Order and Local Truncation Error (LTE) 

 

The LMMs (9) is said to be of order 𝑝 if  

 
𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑝 + 𝜇 − 1 = 0,      𝐶𝑝+𝜇 ≠ 0. 

 

Here 𝐶𝑝+𝜇 is the error constant and  

 
𝐶𝑝+𝜇ℎ

𝑝+𝜇𝑦(𝑝+𝜇)(𝑥𝑛) 

 

is the principal Local Truncation Error (LTE) at the point 𝑥𝑛. The 𝐶′𝑠 are given by  
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𝐶0 = 𝛼0 + 𝛼1 + 𝛼2 +⋯+ 𝛼𝑘 

𝐶1 = (𝛼0 + 𝛼1 + 𝛼2 +⋯+ 𝛼𝑘) − (𝛽0 + 𝛽1 +⋯+ 𝛽𝑘) 

𝐶𝑞 =
1

𝑞!
(𝛼1 + 2

𝑞𝛼2 +⋯+ 𝑘
𝑞𝛼𝑘) −

1

(𝑞 − 3)!
(𝛽1 + 2

𝑞−1𝛽2 +⋯+ 𝑘
𝑞−3𝛽𝑘), 𝑞 = 2,3, … 

The LTE associated with any of (9) is given by the difference operator 

 
 𝐿[𝑦(𝑥): ℎ] = ∑2𝑖=1 𝛼𝑖

3

𝑦(𝑥𝑛 +
𝑖

3
) − ℎ2∑2𝑗=0 𝛽𝑖

3

𝑦′′(𝑥𝑛 +
𝑖

3
)                                    (13) 

 
where 𝑦 ∈ 𝐶2[𝑎, 𝑏] is an arbitrary function. Expanding (13) in Taylor’s series about the point 𝑥𝑛, the followingexpression is obtained: 

  

𝐿[𝑦(𝑥𝑛): ℎ] = 𝐶0𝑦(𝑥𝑛) + 𝐶1ℎ𝑦′(𝑥𝑛) + 𝐶2ℎ
2𝑦′′(𝑥𝑛) + ⋯+ 𝐶𝜌+2ℎ

𝜌+2𝑦𝜌+2(𝑥𝑛)             (14) 

 
\Expanding each scheme in (11) and (12), the following principal truncation errors are obtained: 

 

𝐶𝑝+2
0 =

−3953

7610145177600
, 𝐶𝑝+2

1 =
11

475634073600
, 𝐶𝑝+2

2 =
41

72477573120
, 𝐶𝑝+2

1

2 =
−641

15220290355200
 

𝐶𝑝+2

5

4 =
11

237817036800
, 𝐶𝑝+2

3

2 =
269

3044058071040
, 𝐶𝑝+2

7

4 =
11

237817036800
, 𝐶′𝑝+2

0 =
1651777

251134790860800
 

𝐶′𝑝+2

1

4 =
−7453

7847962214400
, 𝐶′𝑝+2

1

2 =
112129

251134790860800
, 𝐶′𝑝+2

3

4 −589

7847962214400
,𝐶′𝑝+2

1 9079

35876398694400
 

𝐶′𝑝+2

5

4 =
−589

7847962214400
,𝐶′𝑝+2

3

2 =
112129

251134790860800
,𝐶′𝑝+2

7

4 =
−7453

7847962214400
, 𝐶′𝑝+2

2 =
1651777

251134790860800
 

 

The above blocked method (11) and (12) is of uniform order 𝑝 = 9 

 

 

3.3.2  Consistency of the Methods 

 

The LMM (9) is said to be consistent if it has order 𝑝 ≥ 1 and the first and second characteristic polynomials which are defined respectively, 

as  

 
 𝜌(𝑟) = ∑𝑘𝑗=0 𝛼𝑗𝑧

𝑗                                                       (15) 

and  

  

𝜎(𝑟) = ∑𝑘𝑗=0 𝛽𝑗𝑧
𝑗                                                             (16) 

 
where 𝑟 is the principal root, satisfy the following conditions:  

 

 ∑𝑘𝑗=0 𝛼𝑗 = 0                                                           (17) 

 
  𝜌(1) = 𝜌′(1) = 0                                                            (18) 

 

and  

 

 𝜌′′(1) = 2! 𝜎(1)                                                            (19) 

See [1,4,9]. 

 
Consider the main method in (11) given as  

 

𝑦𝑛+2 = −
5

2
𝑦
𝑛+

1

4

+
7

2
𝑦
𝑛+

3

4

− ℎ2 (
1453𝑓𝑛

3317760
−
11147𝑓

𝑛+
1
4

829440
−
130247𝑓

𝑛+
1
2

829440
−
245693𝑓

𝑛+
3
4

829440
−
79637𝑓𝑛+1

331776

−
167717𝑓

𝑛+
5
4

829440
−
93743𝑓

𝑛+
3
2

829440
−
𝟓𝟔𝟕𝟐𝟑𝒇

𝒏+
𝟕
𝟒

𝟖𝟐𝟗𝟒𝟒𝟎
−
𝟏𝟐𝟖𝟎𝟑𝒇𝒏+𝟐

𝟑𝟑𝟏𝟕𝟕𝟔𝟎
)

           (20) 

 

The condition (17) is satisfied. the first characteristic equation for (11) is given as:   
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𝜌(𝑟) = 𝑟2 +
5

2
𝑟
1

4 −
7

2
𝑟
3

4                                                   (21) 

  

 𝜌′(𝑟) =
5

8𝑟3/4
−

21

8𝑟1/4
+ 2𝑟                                                     (22 ) 

 
Here 𝜌(1) = 0, 𝜌′(1) = 0. Therefore, (18) is satisfied. The second characteristic polynomial for (11) is given as 

 𝜎(𝑟) = −
1453

3317760
+
11147𝑟

1
4

829440
+
130247𝑟

1
2

829440
+
245693𝑟

3
4

829440
+
79637𝑟

331776
+
167717𝑟

5
4

829440
+
93743𝑟

3
2

829440
+
56723𝑟

7
4

829440
+

12803𝑟2

3317760
        (23) 

 
  𝜎(1) =

35

32
                                                      (24) 

 
𝜌′′(𝑟) = 2 −

15

32𝑟7/4
+

21

32𝑟5/4
        𝜌′′(1) =

35

16
                            (25) 

 
Hence condition (19) is satisfied. Conclusively, the hybrid method is consistent. 

 

 

3.3.3  Zero Stability 

 

To establish hat the methods are zero stable, each of the method in block form are solved simultaneously to obtain all the 𝑦𝑖 and 𝑦′𝑖’s for 

appropriate index 𝑖, see [10]. For the method (11) and its additional methods in (20), they are taken in block form and solved simultaneously 

to obtain 𝒚 𝒊

𝟒

 for 𝒊 = 𝟎(𝟏)𝟖 to obtain the following block method.  

A numerical method is zero-stable if the solutions remain bounded as ℎ → 0, which means that the method does not provide 

solutions that grow unbounded as the number of steps increases, see [10]. To show the zero-stability of the block method (11)-(12), we take 

𝒉 → 𝟎 the method may be rewritten in matrix form as  

 

Definition 3.1 The two step hybrid block method (11)-(12) is said to be zero stabile if the number of root of the first characteristic equation 

|𝜌(𝑟)| < 1 and if |𝜌(𝑟)| = 1, then the multiplicity of 𝜌(𝑟) must not exceed 2.  

 

To show the zero-stability of the block method (11)-(12), we take ℎ → 0 the method may be rewritten in matrix form as  

 
 𝐴0𝑌𝑛 = 𝐴1𝑌𝑛−1                                                            (26) 

 𝑌𝑛 = (𝑌𝑛
0, 𝑌𝑛

1)𝑇 

 𝑌𝑛
0 = (𝑦

𝑛+
1

4

, 𝑦
𝑛+

1

2

, 𝑦
𝑛+

3

4

, 𝑦𝑛+1, 𝑦𝑛+5
4

, 𝑦
𝑛+

3

2

, 𝑦
𝑛+

7

4

, 𝑦𝑛+2)
𝑇 

 𝑌𝑛
0 = (𝑦′

𝑛+
1

4

, 𝑦′
𝑛+

1

2

, 𝑦′
𝑛+

3

4

, 𝑦′𝑛+1, 𝑦′𝑛+5
4

, 𝑦′
𝑛+

3

2

, 𝑦′
𝑛+

7

4

, 𝑦′𝑛+2)
𝑇 

𝐴0 = 𝐼16×16 identity matrix and 𝐴1 = 𝐼16×16 matrix given by 

 

𝐴1 = (
𝐴11 0
0 𝐴22);  𝐴11 =

(

 
 
 
 
 
 

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

)

 
 
 
 
 
 

;  𝐴22 =

(

 
 
 
 
 
 

0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

)

 
 
 
 
 
 

 

 
The characteristic polynomial of the matrix 𝐴11 is given as |𝐴11 − 𝜆𝐼|, that is 𝜆7(𝜆 − 1) = 0 with root 𝜆𝑗 = 0 for 𝑗 = 1,… ,7 and 𝜆8 = 1. 

 

The characteristic polynomial of the matrix 𝐴22 is given as |𝐴22 − 𝜆𝐼|, that is 𝜆7(𝜆 − 1) = 0 with root 𝜆𝑗 = 0 for 𝑗 = 1,… ,7 and 𝜆8 = 1. 

 

Hence, the method (11)-(12) is zero stable. 
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3.3.4  Convergence of the Methods 

 

Definition 3.2 (Convergence) An LMM is said to be convergent if and only if it is consistent and zero-stable.  

 

By the above definition, the derived hybrid methods are convergent. 

 

3.3.6  Implementation of Method 

 

The implementation is such that the block method is solved at once simultaneously as detailed in the below algorithm. 

Block Algorithm for BHI 

1 begin procedureENTER Partitions (𝑎, 𝑏, 𝑁, ℎ, variables)   

2 For 𝑥𝑛 = 𝑥𝑛−1 + ℎ, 𝑛 = 1,… ,𝑁, ℎ =
𝑏−𝑎

𝑁
   

3         Generate system from block   

4         Solve [System, variables]   

5         Obtain 𝑦𝑛   

6   end procedure   

 

 

4.0 NUMERICAL EXAMPLES 

 

In this chapter, the performance of the developed two step hybrid block scheme is examined. the exact and approximate solution are 

tabulated. The tables below shows the numerical results of the new developed scheme with exact solution for solving the problem and the 

result of the developed scheme are more accurate than existing methods. 

 

 

Example 1. 

 

Consider the PDE.  

 
𝜅
∂𝑦2

∂𝑥2
−
∂𝑦

∂𝑡
= 0

𝑦(0, 𝑡) = 𝑦(1, 𝑡) = 0,    𝑦(𝑥, 0) = sin𝜋𝑥 + sin𝜔𝜋𝑥,    𝜔 > 1
                           (27) 

 
The analytic solution is 𝑦(𝑥, 𝑡) = 𝑒−𝜋

2𝜅𝑡sin𝜋𝑥 + 𝑒−𝜔
2𝜋2𝜅𝑡sin𝜋𝑥 

 

Following [11], (27) becomes 

 
d𝑦𝑚

2  

d𝑥2
=
1

𝜅

𝑦(𝑥 ,   𝑡𝑚+1) − 𝑦(𝑥 ,   𝑡𝑚−1)]

(Δ𝑡)
                                                      (28) 

 
𝑦𝑚(0, 𝑡𝑚) = 𝑦𝑚(1, 𝑡𝑚) = 0,    𝑦𝑚(𝑥, 0) = sin𝜋𝑥 + sin𝜔𝜋𝑥,    𝜅 > 1 

 
where 𝑡𝑚 = 𝑚Δ𝑡,    𝑚 = 0,1,… ,𝑀; 𝑦𝑚(𝑥) ≈ 𝑦(𝑥, 𝑡𝑚), 𝑦(𝑥) = [𝑦0(𝑥), 𝑦1(𝑥),… , y𝑀−1(𝑥)]

𝑇,  

hence (28) becomes the system  
𝑑2𝑦𝑚(𝑥)

𝑑x2 
= 𝑓(𝑥 , 𝑦𝑚) which is in the form of (2), where 𝑓(𝑥, 𝑡𝑚) = 𝐴𝑦 + 𝐺 and 𝐴 is an 𝑀 − 1 square 

matrix, 𝐺 is a vector of constants.  

 

Table 1: Exact and Numerical solution for Example 1. 

x Exact HBI Error 

0.0 1.65341E-9 1.65341E-9 0 

0.1 6.16242E-10 6.16242E-10 2.25E-14 

0.2 2.29678E-10 2.29678E-10 8.12E-14 

0.3 8.56029E-11 8.56029E-11 4.23E-14 

0.4 3.19048E-11 3.19048E-11 7.87E-14 

0.5 1.18911E-11 1.18911E-11 7.53E-14 

0.6 4.43194E-12 4.43194E-12 5.83E-14 

0.7 1.65181E-12 1.65181E-12 6.84E-14 
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0.8 6.15646E-13 6.15646E-13 3.98E-15 

0.9 2.29456E-13 2.29456E-13 1.77E-15 

 

 
Table 2: Comparison of maximum errors obtained in different methods for Example 1 at 𝑡 = 1. 

𝜔 HBI BHSDA 

1 1.011 × 10−14 2.64 × 10−6 

2 1.075 × 10−14 1.32 × 10−6 

3 1.098 × 10−14 1.32 × 10−6 

5 1.032 × 10−14 1.32 × 10−6 

10 1.012 × 10−14 1.32 × 10−6 

BHSDA is L -Stable Block Hybrid Second Derivative Algorithm in [11]. 

  

 
Figure 1:  Surface plots for the Exact and numerical solution for Example 1 

 

Tables 1-2 shows the comparison of exact numerical solutions and the errors for Example 1. Table 3 shows the comparison of maximum 

errors obtained for example 1 using the derived method and the method in [11]. This shows the superiorly of the derived method. Figure 1 

show the surface plots for the exact solution and Numerical solutions for Example 1. 

 

 

Example 2. 

 

Consider the PDE in [8]:  

 

 

∂𝑦2

∂𝑥2
+
∂𝑦2

∂𝑡2
= −32𝜋2sin(4𝜋𝑥),    𝑥 ∈ [0,1]

𝑦(±1, 𝑡) = 𝑦(𝑥, ±1) = 0,    𝑡 > 0
                                   (29) 

 

The analytic solution is 𝑦(𝑥, 𝑡) = sin (4𝜋𝑥)sin (4𝜋𝑡). 
 

Following [11], (29) becomes 

 
d𝑦𝑚

2  

d𝑥2
= −

𝑦(𝑥 ,   𝑡𝑚+1)−2𝑦(𝑥 ,   𝑡𝑚)+𝑦(𝑥 ,   𝑡𝑚−1)]

(2Δ𝑡)
− 32𝜋2sin(4𝜋𝑥)                       (30) 

𝑦𝑚(±1, 𝑡𝑚) = 𝑦𝑚(x, ±1) = 0,      

where 𝑡𝑚 = 𝑚Δ𝑡,    𝑚 = 0,1,… ,𝑀; 𝑦𝑚(𝑥) ≈ 𝑦(𝑥, 𝑡𝑚), 𝑦(𝑥) = [𝑦0(𝑥), 𝑦1(𝑥),… , y𝑀−1(𝑥)]
𝑇,  hence (30) becomes the system  

𝑑2𝑦𝑚(𝑥)

𝑑x2 
= 𝑓(𝑥 , 𝑦𝑚) which is in the form of (2). where 𝑓(𝑥, 𝑡𝑚) = 𝐴𝑦 + 𝐺 and 𝐴 is an 𝑀 − 1 square matrix, 𝐺 is a vector of constants.  

 

Table 4: Exact and Numerical solution using HBI for Example 2 . 

x Exact HBI Error 

0.0 6.634320126E-16 6.634320126E-16 0. 

0.2 0.5590169122545 0.5590169122547 2.21E-12 

0.4 -0.9045084378512 -0.9045084378518 6.25E-12 
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0.6 0.9045084354472 0.9045084354474 2.57E-12 

0.8 -0.5590169311454 -0.5590169311451 3.38E-12 

1.0 -4.658833273E-16 -4.658833273E-16 0. 

for 𝑁 = 10, 𝑥 ∈ [−1,1]. 

 
   

Table 5: Comparison of maximum errors obtained in existing methods for Example 2 at 𝑡 = 1 

N HBI 𝒍∞ error CPU Time BVM 𝒍∞ error CPU Time BUM 𝒍∞ error CPU Time 

16 5.215E-8 0.214 9.662E-0 0.483 1.251E-1 0.531 

32 2.125E-8 0.901 2.582E-2 1.235 2.578E-2 1.031 

64 6.778E-8 3.114 6.433E-3 5.358 6.459E-3 5.516 

128 8.974E-8 12.128 1.607E-3 43.641 1.607E-3 46.923 

256 1.954E-8 32.125 2.000E-0 512.843 4.016E-4 532.657 

BVM and BUM are Boundary Value Methods and the Block Unification Methods in [8]. 

 

 
Figure 2:  Surface plots for the Exact and numerical solution for Example 3 

 

Table 4 shows the comparison of the exact and numerical solution and the errors for Example 2. Table 5 shows the maximum error and CPU 

time obtained for different methods. Comparing This show that the derived methods performs accurately, superiorly and affluently in terms 

of the computer time, and errors obtained for Examples 2. Figure 2 shows the surface plots for the exact and Numerical solution for 

Examples 2. 

 

 

Example 3. 

 

The temperature distribution of the radiation fin of trapezoidal is modeled to the following differential equation profile in [12].  

 

{
 

 𝑦′′ − 𝑦 − sin(2𝜋𝑥)(−1 − 4𝜋2) (𝑥3 −
4

3
𝑥2 +

𝑥

3
)

− (6𝑥 −
8

3
) sin(2𝜋𝑥) − 4𝜋cos(2𝜋𝑥) (3𝑥2 −

8

3
𝑥 +

1

3
) = 0,      0 ≤ 𝑥 ≤ 1

𝑦(0) = 𝑦(1),    𝑦′(0) = 𝑦′(1)

                   (32) 

The analytic solution is given by 𝑦(𝑥) = (𝑥3 −
4

3
𝑥2 +

𝑥

3
) sin(2𝜋𝑥). 

 

Table 6: Comparison of Maximum errors obtained in different methods for Example 3. 

N HBI Method in [12] 

16 2.154E-4 Nil 

32 7.845E-6 5.1818E-3 

64 3.789E-6 1.3008E-3 

128 1.458E-6 3.2608E-4 
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Table 6 shows the comparison of Maximum errors obtained for Example 3 with the method in  [12]. 

 

 

Example 4. 

 

Consider the problem in [13]. 

 

 {
𝑦′′ − 𝑦 = cos(𝑥),      0 ≤ 𝑥 ≤ 1

𝑦(0) = 0,    𝑦(1) = 1
                                           (33) 

 

The analytic solution is given by 𝑦(𝑥) = cos(𝑥) +
1−cos(1)

sin(1)
sin(𝑥) − 1. With 𝑁 = 10. 

 

Table 7: Comparison of exact and numerical solutions obtained for Example 7. 

X Exact HBI 

0 0 0 

0.1 0.059343034025940 0.059343033922545 

0.2 0.110134207176555 0.110134206998541 

0.3 0.151024408862577 0.151024408745541 

0.4 0.180475345562389 0.180475345618845 

0.5 0.196734670143683 0.196734670284321 

0.6 0.197807972378616 0.197807973077854 

0.7 0.181427245522797 0.181427246017854 

0.8 0.145015397537614 0.145015399155465 

0.9 0.085646323767636 0.085646324667561 

1.0 0 0 

  

Table 8: Comparison of errors obtained in different methods for Example 4. 

x Method in [14] Method in [13] HBI 

0.1 1.130000E-07 1.980493E-14 4.12472E-16 

0.2 2.190000E-07 3.832952E-14 8.88781E-16 

0.3 3.290000E-07 5.551284E-14 3.21548E-16 

0.4 3.740000E-07 6.681520E-14 8.47855E-16 

0.5 4.170000E-07 7.463205E-14 3.54878E-16 

0.6 4.680000E-07 7.869950E-14 3.21548E-16 

0.7 4.280000E-07 7.251511E-14 3.21254E-16 

0.8 3.620000E-07 5.918955E-14 4.77855E-16 

0.9 2.620000E-07 3.811464E-15 1.47854E-16 

1.0 N/A 0.0000000000 0.000000000 

 Table 7 shows clearly,the comparison of Exact and numerical solutions or Example 4. Table 8 shows comparison of errors obtained in 

different methods for Example 4. The Method HBI performed favourable well when compared to Methods in [13] and [14]. 

 

 

5.2  Conclusion 

 

The development of some numerical schemes has been proposed in this work. This was developed via the interpolation and collocation 

techniques using power series function as trial solutions. The methods solves effectively second order partial differential equations (PDEs) 

and BVPs in Ordinary differential equations and the results obtained were accurate. The analysis of the new methods showed that all satisfy 

the properties of numerical methods for solution of differential equations. Namely, Consistency, Zero- Stability, Continuity and convergence. 
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