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Abstract

A ninth order numerical scheme is develped in this work to directly solve second order
initial and boundary value problems and via the method of lines for the semi-
descritization and solution for second order partial differential equations. These schemes
are developed via the collocation technique and unified to form a single block of hybrid
integrators. The derived method is investigated for its consistency, zero-stability and
convergence and found to satisfy these characteristics. Numerical examples shows that
the derived method is fond to be efficient in terms of implimentation and less computer
time and in terms of accuracu when compared to existina methods in literature.
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1. INTRODUCTION
In this work, we consider second order partial differential equations of the form

Vax = f(0 69, Y6 Ver) 1)

With appropriate initial-boundary conditions and the second order ordinanry differential equations of the form

y'=fyy) @
Subject to any of the boundary conditions

y(a) =ag,y (b) =P
y(@) =agy '(b) =B Vi) 3)
y(a)=ay,y (b) =B

Where x € (a,b), y € C?[a, b],with a,b,a;8; € R for i = 0,1. For the purpose of existence and uniqueness of y, we assume that the
function f is a continuous function that satisfy a Lipschitz condition subject to the above initial and boundary conditions, and by extention a
contraction map.

No doubt that second order Partial and ordinary differential equation finds its applications in many spheres of human endevours,
these includes but not limited to particles diffusions, motions of a body, oscillations, electricity, population dynamics, finance and so on.
Second order differential equations in most cases have no closed (analytic) solutions especially nonlinear ones, ence the need for numerical
approximations of the solutions.

Numerical techniques are numerous and the types know no bounds .They include ;The Euler method, Runge-Kutta methods, linear
Multistep method, shooting method, Finite difference method, finite element methods, e.g Galerkin method, Spectral element method. Other
methods are; Spectral method base on Fourier transformation; Method of lines reduces the PDE to a large system of ordinary differential
equation (ODE) Boundary Element Method (BEM) based on transforming a PDE to an integral equation on the boundary of the domains and
it is popular in computational fluid dynamics, the list is endless.

Authors who have worked extensively on numerical mrethods for approximation of solution of a differential equation include but
not limited to [1-7].

In this work, we consider the solution of second order differential equations by deriving linear multistep methods via the
interpolation/collocation technique. These linear multistep methods are unified to form a single block which is then applied directly for
solution of second order BVPs. In other to solve second order PDEs, the PDEs are semi-dicretized to form a system of second order ODEs
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and then the resulting systems are solve with the derived block method. For more on this approach see, [5,8].
3.2 Derivation of the Method
A 2-step block methods for the problem of the form (2) with conditions (3) is considered.
Consider the grid points given by x,,, X,+1 = X, + h, X432 = x, + 2h, for solving the problem in (2) on the interval [x,, x,,4,]. We assume
a trial solution y(x) of (2) by a polynomial p(x) given by
y(x) =p(x) = BiZ5 7 apx! “

which on differentiating yields

Y'() =p"(x) = X7 il - Dax'™? ©)
with the a; € R real unknown parameters to be determined. r is the number of interpolation points and s is the number of collocation
points.

2.1 Specification of the method

In this work the interval of integration considered is [x;, x,,+2], We thus consider the off-set points x:, for i = 0(1)8. Interpolating (4) at the

4

points x,,;, for i = %,%, implies » = 2 and collocating (5) at points x:, for i = 0(1)8 implies s = 9 so that (4) and (5) becomes
4

y(x) = p(x) = Xl aix’ = ao + arx + azx? + -+ + azox ™’ (6)

which on differentiating yields
Y'(x) =p"(x) =L, i(i — Daix'"2? = 2a, + 6azx + 12a,x% + -+ + 90a,ox® 0

From the imposed collocation condition, the following system of algebraic equation is obtained

1 x1 x2 ¥ x X x? x7 ¥ X %10
2 s 2 1 2 2 2 2 2 2 y 1
1 x 2 8 x x x¥ xZ  «£ X K far
i3 a 3 3 i : 3 N : Vi
0 0 2 6x, 12x2 20x3 30xt 42x5 56x§5 72x] 90x8 ZO f N
n
0 0 2 6x 12x2 20x7 30xf 42xP 56xf 72x] 90x? Iy Fo
n 3 3 p p 3 3 p 2 nty
0 0 2 6x1 12x7 20xd 30xf 42x7 56xf 72x] 90xP a3 foed
2 2 2 2 2 2 2 2 Ay 2
A=|0 0 2 6xs 12xf 20xf 30xi 42xf S56xf 72x 90xf | L _|% | b= fn+;
- 4 2 2 ) 2 2 2 + ’=" | ag |’ == f
0 0 2 6x 12x? 20x; 30x} 42x7 56x° 72x] 90x% a, an
5
0 0 2 6xs 12x% 20x3 30x¢ 42xd 56x8 72xI 90x8 ag ny
P 3 3 P p B 3 p ao s
0 0 2 6xs 12x% 20x3 30x5 42x3 56x5 72x 90x8 aso 2
2 B B Z 2 z z 3 f n4l
0 0 2 6x: 12x% 20x3 30xF 42xF 56xf 72x7 90x8 f
1 z 3 3 3 3 3 3 n+2
0 0 2 6x, 12x3 20x3 30xs 42x5 56x5 72x] 90x3

e=(1,x, x2,x3,x% x5, %6, x7, x8, x°, x10)T

Where vk = YOnar) = Y0) + R frek = f(Xnak Vsl Y'nar)- Hence, we state the following theorem without proof.

Theorem 2.1 [8]. Let (6) and (7) be satisfied, then the 2-step continuous linear hybrid multistep method is equivalent to the equation
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y(x) =bT(A)e (8)

where b, A and e are as defined above.

Now, invoking Theorem 2.1 and applying it, the following continuous hybrid method is derived

Y() = By @osy s + W2 5o Bif 0
4

where a and g are function of t given as

Evaluating (9) at the points x = x,

%(3 —4p)
S(-1+4t)

mhz(l + 4t)(3 + 4t)(—2229 — 1128t + 17904t? + 2688t3 — 155904¢*
+215040t +86016t° — 294912t7 + 131072t%)

— K2 2 3
—————h2(1+ 4£)(3 + 4£)(—23183 + 19508t + 19600 + 37184t

—466688t4 + 742400t5-94208t° — 507904t + 262144t%)

I Y 2 3
ooz M2 (1 + 46)(3 + 46)(317467 — 489028t + 914992t% — 981568t

—935168t4 + 29542405 — 1077248t° — 1490944t + 917504¢°)

- p2 2 3
— o h?(1 + 48)(3 + 4t)(—499761 + 246852t + 1348848t% — 3349440t

+3479o4t4 + 5514240t5-3280896t° — 2408448t” + 1835008t°)

eisics h%(1 + 4t)(3 + 4t)(30965 + 342160t — 54640t? — 1533440t> + 1122560t*
+2191360t5—2019328t6 —917504t7 + 917504¢%)

h%(1 + 4t)(3 + 4£)(13199 + 130588t — 766864t — 176748813

29030400
+3194624t4 +2882560t° — 4427776t° — 1261568t” + 1835008¢t°)

2 _ 2 3
79030400 h*(1+4t)(3 + 4t)(3867 + 37668t —221520t“ — 309696t

+1542912t4 +691200t5—2224128t° — 344064t + 917504¢°)
h%(1 + 4t)(3 + 4t)(817 + 7532t — 44528t% — 48448¢> + 332032¢*

29030400
+35840t° — 585728t% — 16384t7 + 262144t°)
- - R2 — 2 3 4
1161216Ooh (1 +4t)(3 +4t)(331 + 2888t — 17168t> — 16000¢> + 130816t
—10240t5 — 241664t° + 32768t + 131072t%);

where t = %
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3 1 2 1551715, 9421fn+% 144—84—7fn+% 252101fn+% 57010
= o~ 1— = 3 b
In 2 yn+; 2 yn+; 38707200 ' 153600 9676800 9676800 258048
4601
135901, s ~ 56473f 3 . fos 6029002
9676800 9676800 ' 3225600 38707200
23183 317467 55529
1 43 Y T fuk Tuid Tuid | 6193fn
= —= 1+ - 3 —
Yn+1 2y nty 2 Yy nty 12902400 ' 9676800 9676800 1075200 774144
13199 1289 817
Tt Tnid Tl 4 3o
9676800 ' 3225600 9676800 ' 38707200
11147 130247 245693
_ 5 47 p2 [ 1453/ f niy f n+ f nts  79637fn41
Yn+2 = 2y nir T 2 y n+d 3317760 @ 829440 829440 829440 331776
167717 93743 56723
N Tusg (P70 g ST 120031,
829440 829440 829440 3317760
81533 761057 43151
1 41 + p2 [ 2829 fn+% fn+% fn+% 3757 fri1
Vsl zyn% zyn+% 116121600 29030400 29030400 29030400 2322432
34549 14717 3607
+ fn+§ B fn+§ + Sl _ 1571fnse (11)
29030400 29030400 ' 29030400 116121600
1103 14747 3127
2 [ 109f, Suidk Suid i | 1189744
y s= —y 1+2y 3—h + 4 z 4
n+> nty nt; 907200 ' 226800 226800 28350 18144
971f s 47f 3 11f 7
+ ke SIS A 11fne
226800 ' 226800 113400 ' 907200
317 187981 326651
_ 3 43 p2 (14530 f nts f nid f nts  33403f,,,
Vsl 2y nit T 2 y n+d 7741440 ' 43008 1935360 1935360 258048
116287 2557 337
Ol Wl I T
1935360 387072 645120 @ 7741440
13f 1 9847f ; 1889f ;
23f nd n+l n+d | 1189f,,4
= -2 _ h2 n 4 2 1
Vsl yn+§ + 3yn+% h”\ o0s00 t 1330 T 75600 T 8400 6048
4493 1649 353
+ fn+§ + fn+% fn+% _ 29f 42
37800 25200 75600 302400

Differentiating (10) and evaluating the derivative of (9) at the points x = X, b which is equivalentto t = i for i = 0(1)8, the following

additional methods are obtained
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= ~ 2yn+% 2yn+% s 44—629hfn+% . 174373hfn+% ~ 2378351hfn+% 6291y
n h h 2073600 115200 1451520 7257600 2160
550087h 8923h
it N Ty BB | 29137000
7257600 7257600 483840 14515200
2 2 3613h 44701h
) Yoy Puid sz, f ot Sl NECHY 5039hfni1
1 = — —_— —_— — 3 ——
y ng h h ' 302400 45360 226800 ' 225 ) n+ 90720
7523h 199h 353h
fn+§ _ fn+% fn+% _ 43hfniz
226800 15120 113400 129600
2 2 109717h 3047h 456943h
) Yok | Pk 1790nr, St N foid Tuid  1597hfni
1 = — _— —
yn+5 h R 2903040 ' 7257600 115200 7257600 45360
9119h 51623h 11861h
UM, SISy U2 s,
483840 7257600 7257600 ' 4838400
2 2 13h 31597h 26843h
Y oa= - Vsl + Tnd  103hf, fn+% fn+% fn+%  671hfui
nis h h 907200 ' 1575 226800 226800 30240
971h 607h 41h
VT ML W,
113400 226800 ' 75600 907200
2 2 78101h 903097h 40309h
Y= — Y | Inid  1627nf, fw% fn+% fn+% 1189hf .1
n+1 h 1 4838400 ' 7257600 7257600 161280 9072 (12)
150737h 14573h 8917h
_ S Tuid  BVMLT 349hf0ss
7257600 2419200 7257600 ' 2903040
2 2 2039h 671h 3127h
y 5= - R B fn+% + fn+% + fn+% 25793hf i1
n+s h R 907200 ' 226800 5040 14175 90720
8377h 287h 29h
LB g By Mg sng
75600 32400 22680 302400
2 2 1801k 895193h 1799953h
P S S Tuidk Tuit Tuid | 34310f0ne
y n+s h R 14515200 ' 161280 7257600 7257600 15120
302873h 150971h 13511h
S Tuid Juil | 5809hfs
1036800 1451520 2419200 ' 14515200
2 2 13h 32573h 4939h
y a= - Tng + nif | Tuik Susd Tosd  a117Rf e
ns h ' 8640 ' 2025 226800 25200 12960
3887h 24763h 20227h
+ f"+§ fn+% fn+% _ 1759hf 12
22680 75600 226800 907200
2 2 203029h 44081h 427943h
y, - _ yn+% yn+% _ 32273hf, fn+% fn+% fn+% _ 1319hf 41
n+2 h R 14515200 7257600 806400 1036800 45360
1347173h 74951h 2880811h
f"+% fn+% fn+% 49613hf .2
2419200 7257600 7257600 691200

The unification of equations (11) and (12) is the required block method that must be applied to solve the required second-order problems.

3 Analysis of the Method

3.1 Order and Local Truncation Error (LTE)

The LMMs (9) is said to be of order p if
Co=C=C=+=C+pu—1=0, Cprp # 0.

Here C,,,, is the error constant and

prh’”“y(p“)(xn)

is the principal Local Truncation Error (LTE) at the point x,,. The C's are given by
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C0=a0+a1+a2+"'+ak
Ci=(aotar+a,+-+ar)— (Bo+ P+ +B)

1 1
Cq = a(al + 2qa2 + -4 kqak) - M(ﬁl + 2‘1‘1[)’2 + 4 kq_3ﬁk),q = 2,3,
The LTE associated with any of (9) is given by the difference operator

Ly():h] = Shy asy(on +5) = B 5o By G +5) (13)

3
where y € C?[a, b] is an arbitrary function. Expanding (13) in Taylor’s series about the point x,,, the followingexpression is obtained:

LIy(xn): h] = Coy(xn) + C1hy'(xn) + C2h%y" (xn) + - + CpuahP*2yP*2 (xy) (14)

\Expanding each scheme in (11) and (12), the following principal truncation errors are obtained:

1

o — -3953 1 11 cz. — 41 cz = —-641
5p+2 7610145177600'3 P+2 ™ 475634073600’ 71""2 72477573120 p+2  15220290355200
ch = 11 c: = 269 i = 11 o = 1651777
P+f 237817036800 " P+2 L 3044058071040 " P+2 2337817036800' P+2 7 251134790860800
= 7453 n 112129 iz —589 " 9079
P+2 T 7847962214400 ~ P+2 T 251134790860800° = P+2 7847962214400"  P¥2 35876398694400
,% —589 ,% . 112129 ,% . —7453 P 1651777

P+2 T 7847962214400’ P+2 ~ 251134790860800'  P+2 ~ 7847962214400’ ~ P+2 T 251134790860800

The above blocked method (11) and (12) is of uniform order p =9

3.3.2 Consistency of the Methods

The LMM (9) is said to be consistent if it has order p > 1 and the first and second characteristic polynomials which are defined respectively,
as

p(r) =3k, ajz/ (15)
and

a(r) = Xf B2’ (16)

where r is the principal root, satisfy the following conditions:

Yhoa=0 17

p()=p'(1)=0 (18)
and

p"(1) =21a(1) (19)
See [1,4,9].
Consider the main method in (11) given as

11147f 1 130247f 1 245693f 3
- _3 7 _p2 | 1453fn _ iy S nty N 79637fnis
In+z = 2 ynﬁ + zyn+% h (3317760 829440 829440 829440 331776

20)
2 (
~ 167717fn+% ~ 9374—3fn+% ~ 567 3fn+% ~ 12803fn+2>

829440 829440 829440 3317760

The condition (17) is satisfied. the first characteristic equation for (11) is given as:
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1 3
p(r)=r?+ grl - %rl (21)
’ 5 21
p(T')=W—W+ZT (22)

Here p(1) = 0, p'(1) = 0. Therefore, (18) is satlsfled The second characterlstlc polynomlal for (11) is given as

o) = 1453 1114773 | 13024753 | 24569311 | 79637r _ 167717r% _ 93743r3 _ 56723r% _ 128037 23)
3317760 = 829440 829440 829440 331776 = 829440 829440 ~ 829440 3317760

35
o)== (24)

32

" 21 1 35

r)y=2-— + == 1)== 25
P 32r7/4 32r5/4 pr(D 16 (25)

Hence condition (19) is satisfied. Conclusively, the hybrid method is consistent.

3.3.3 Zero Stability

To establish hat the methods are zero stable, each of the method in block form are solved simultaneously to obtain all the y; and y';’s for
appropriate index i, see [10]. For the method (11) and its additional methods in (20), they are taken in block form and solved simultaneously
to obtain y: for i = 0(1)8 to obtain the following block method.

4

A numerical method is zero-stable if the solutions remain bounded as h — 0, which means that the method does not provide
solutions that grow unbounded as the number of steps increases, see [10]. To show the zero-stability of the block method (11)-(12), we take
h — 0 the method may be rewritten in matrix form as

Definition 3.1 The two step hybrid block method (11)-(12) is said to be zero stabile if the number of root of the first characteristic equation
lp(r)| < 1 andif |p(r)| = 1, then the multiplicity of p(r) must not exceed 2.

To show the zero-stability of the block method (11)-(12), we take h — 0 the method may be rewritten in matrix form as

ApYy = A1Yn (26)
Yy = (Y2, Ya)"
Yy = (CAVETS SR TR ATETS (RS AN AT Yns2)"
Yy = (y’n% Y e Y nil¥ 'n+1 Y i Y nad Y2 ¥ 'n+2)"
Ay = Ligx16 identity matrlx and 4, = I16><16 matrlx given by

;0 Ap =

b
firy
Il
/N
S
firy
o
e )
N
N
v
=~
firy
o
|
RRRE R R R R
(=Nl eloloNo NNl
[=NeNeNeNeNeNeNe)
[=NeNeNoNeNeNeNe)
[=NeNeNeNoNeNeNe)
[=NeNeNeNoNeNeNe)
[=NeNeNeNeNeNeNe)
[=NeNeNeNeNeNeNe)
[~ -NeNeNeleee]
— R R R R R
[N -NeNeNeleee]
SO0 OoOOCOOO
SO0 OoOOCOOO
SO0 OoOOCOOO
SO0 OoOOCOOO
OO0 OO OO OO

The characteristic polynomial of the matrix A,; is givenas |A;; — Al|, thatis A7(1 — 1) = 0 withroot A; = 0 for j =1,..,7 and 1g = 1.
The characteristic polynomial of the matrix A,, is givenas |A,, — Al|, thatis A7(1 — 1) = 0 withroot 4; = 0 for j = 1,..,7 and Ag = 1.

Hence, the method (11)-(12) is zero stable.

Journal of the Nigerian Association of Mathematical Physics Volume 58., (August-December 2020) pp183-194.

189



Ninth Order Block Hybrid Integrators For Second Order Olaiya, Joseph, Modebei J of NAMP

3.3.4 Convergence of the Methods

Definition 3.2 (Convergence) An LMM is said to be convergent if and only if it is consistent and zero-stable.

By the above definition, the derived hybrid methods are convergent.

3.3.6 Implementation of Method

The implementation is such that the block method is solved at once simultaneously as detailed in the below algorithm.

Block Algorithm for BHI
1 begin procedureENTER Partitions (a, b, N, h, variables)

b-a

2For x, =x,1+h,n=1,...,N, h=—

N
3 Generate system from block
4 Solve [System, variables]
5 Obtain y,

6 end procedure

4.0 NUMERICAL EXAMPLES

In this chapter, the performance of the developed two step hybrid block scheme is examined. the exact and approximate solution are
tabulated. The tables below shows the numerical results of the new developed scheme with exact solution for solving the problem and the
result of the developed scheme are more accurate than existing methods.

Example 1.

Consider the PDE.
ooy _,
ox ot (@7)
y(0,t) =y(1,t) =0, y(x,0) = sinmx + sinwmnx, w>1

. . - 2 . — (272 .
The analytic solution is y(x,t) = e ™ *tsinmx + e~®"™ *sinmx

Following [11], (27) becomes

dyhn  1y(x,  tme) —y(x,  tm1)]
dx? K (D) (28)

Ym(0,t0) = ym(1,t) =0, Ym(x,0) = sinmx + sinwmx, Kk>1

Wwhere tm = mAt' m= 0'1' 'z"'M; Ym(x) i y(x' tm)' Y(x) = [YO(x)' Y1(x)' o YM-1 (x)]Tr
hence (28) becomes the system ddyx—"z'(x) = f(x ,¥m) Which is in the form of (2), where f(x,t,,) = Ay + G and A isan M — 1 square
matrix, G is a vector of constants.

Table 1: Exact and Numerical solution for Example 1.

X Exact HBI Error
0.0 1.65341E-9 1.65341E-9 0
0.1 6.16242E-10 6.16242E-10 2.25E-14
0.2 2.29678E-10 2.29678E-10 8.12E-14
0.3 8.56029E-11 8.56029E-11 4.23E-14
0.4 3.19048E-11 3.19048E-11 7.87E-14
0.5 1.18911E-11 1.18911E-11 7.53E-14
0.6 4.43194E-12 4.43194E-12 5.83E-14
0.7 1.65181E-12 1.65181E-12 6.84E-14
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0.8 6.15646E-13 6.15646E-13 3.98E-15
0.9 2.29456E-13 2.29456E-13 1.77E-15

Table 2: Comparison of maximum errors obtained in different methods for Example 1 at t = 1.

w HBI BHSDA

1 1.011 x 10~ 2.64 x10°°
2 1.075 x 10714 1.32x 107
3 1.098 x 1014 1.32x10°¢
5 1.032 x 10~ 1.32x10°°
10 1.012 x 10~ 1.32x10°°

BHSDA is L -Stable Block Hybrid Second Derivative Algorithm in [11].

Exact Solution
A

H2BM]_§ Nurmerical Solution

S—

10 10

Figure 1: Surface plots for the Exact and numerical solution for Example 1
Tables 1-2 shows the comparison of exact numerical solutions and the errors for Example 1. Table 3 shows the comparison of maximum
errors obtained for example 1 using the derived method and the method in [11]. This shows the superiorly of the derived method. Figure 1
show the surface plots for the exact solution and Numerical solutions for Example 1.

Example 2.

Consider the PDE in [8]:

% L0 a5
o T3z = —32msin(4nx), x € [0,1] 29)
y(x£1,t) =y(x,£1) =0, t>0
The analytic solution is y(x,t) = sin(4mx)sin(4nt).
Following [11], (29) becomes
e _ oy, tme)=200G, )Y, tme)] 2
o @35 32m*sin(4mx) (30)
Ym(E1 tn) = ym(x, £1) =0,
where t,, = mAt, m=0,1,..,M; y(x) = y(x, tn), y(x) = [¥0(x), y1 (), ...,ymu—1(x)]¥, hence (30) becomes the system
ddyx_n;(x) = f(x ,¥m) Which is in the form of (2). where f(x,t,,) = Ay + G and A isan M — 1 square matrix, G is a vector of constants.

Table 4: Exact and Numerical solution using HBI for Example 2 .

X Exact HBI Error
0.0 6.634320126E-16 6.634320126E-16 0.
0.2 0.5590169122545 0.5590169122547 2.21E-12
0.4 -0.9045084378512 -0.9045084378518 6.25E-12
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0.6 0.9045084354472 0.9045084354474 2.57E-12
0.8 -0.5590169311454 -0.5590169311451 3.38E-12
1.0 -4.658833273E-16 -4.658833273E-16 0.

for N =10, x € [-1,1].

Table 5: Comparison of maximum errors obtained in existing methods for Example 2at t =1

N HBI I, error |CPU Time BVM I error [CPU Time |[BUM I error [CPU Time
16 5.215E-8 0.214 9.662E-0 0.483 1.251E-1 0.531

32 2.125E-8 0.901 2.582E-2 1.235 2.578E-2 1.031

64 6.778E-8 3.114 6.433E-3 5.358 6.459E-3 5.516

128  [8.974E-8 12.128 1.607E-3 43.641 1.607E-3 46.923
256  [1.954E-8 32.125 2.000E-0 512.843 4.016E-4 532.657

BVM and BUM are Boundary Value Methods and the Block Unification Methods in [8].

Exact Solution H2BM3 Nurerical Solution

1w 10

Figure 2: Surface plots for the Exact and numerical solution for Ekample 3

Table 4 shows the comparison of the exact and numerical solution and the errors for Example 2. Table 5 shows the maximum error and CPU
time obtained for different methods. Comparing This show that the derived methods performs accurately, superiorly and affluently in terms
of the computer time, and errors obtained for Examples 2. Figure 2 shows the surface plots for the exact and Numerical solution for
Examples 2.

Example 3.

The temperature distribution of the radiation fin of trapezoidal is modeled to the following differential equation profile in [12].

y" —y —sin(2nx)(—1 — 47?) (x3 - gxz + g)
- (6x — g) sin(2mx) — 4mcos(2mx) (3x2 - gx + ;) =0, 0<x<1 (32)
y(0) =y(1), y'(0) =y'(1)

The analytic solution is given by y(x) = (x3 - gxz + g) sin(2mx).

Table 6: Comparison of Maximum errors obtained in different methods for Example 3.

N HBI Method in [12]
16 2.154E-4 Nil
32 7.845E-6 5.1818E-3
64 3.789E-6 1.3008E-3
128 1.458E-6 3.2608E-4
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Table 6 shows the comparison of Maximum errors obtained for Example 3 with the method in  [12].

Example 4.

Consider the problem in [13].

y" —y = cos(x), 0<x<1
boZo " Y= (39
The analytic solution is given by y(x) = cos(x) + 1;:;(51()1) sin(x) — 1. With N = 10.

Table 7: Comparison of exact and numerical solutions obtained for Example 7.

X Exact HBI

0 0 0
0.1 0.059343034025940 0.059343033922545
0.2 0.110134207176555 0.110134206998541
0.3 0.151024408862577 0.151024408745541
0.4 0.180475345562389 0.180475345618845
0.5 0.196734670143683 0.196734670284321
0.6 0.197807972378616 0.197807973077854
0.7 0.181427245522797 0.181427246017854
0.8 0.145015397537614 0.145015399155465
0.9 0.085646323767636 0.085646324667561

1.0 0 0

Table 8: Comparison of errors obtained in different methods for Example 4.

X Method in [14] Method in [13] HBI
0.1 1.130000E-07 1.980493E-14 4.12472E-16
0.2 2.190000E-07 3.832952E-14 8.88781E-16
0.3 3.290000E-07 5.551284E-14 3.21548E-16
0.4 3.740000E-07 6.681520E-14 8.47855E-16
0.5 4.170000E-07 7.463205E-14 3.54878E-16
0.6 4.680000E-07 7.869950E-14 3.21548E-16
0.7 4.280000E-07 7.251511E-14 3.21254E-16
0.8 3.620000E-07 5.918955E-14 4.77855E-16
0.9 2.620000E-07 3.811464E-15 1.47854E-16
1.0 N/A 0.0000000000 0.000000000

Table 7 shows clearly,the comparison of Exact and numerical solutions or Example 4. Table 8 shows comparison of errors obtained in
different methods for Example 4. The Method HBI performed favourable well when compared to Methods in [13] and [14].

5.2 Conclusion
The development of some numerical schemes has been proposed in this work. This was developed via the interpolation and collocation
techniques using power series function as trial solutions. The methods solves effectively second order partial differential equations (PDES)

and BVPs in Ordinary differential equations and the results obtained were accurate. The analysis of the new methods showed that all satisfy
the properties of numerical methods for solution of differential equations. Namely, Consistency, Zero- Stability, Continuity and convergence.
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