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ABSTRACT : This paper focuses on the development of three-step implicit numerical method capable of 

solving second order Initial Value Problems of Ordinary Differential Equations. The collocation and 

interpolation techniques are used in the derivation of the scheme and the Chebyshev polynomial is employed as 

basis function. The scheme is applied as simultaneous integrator to second order initial value problem of ODEs. 

The self-starting method developed which is capable of producing several outputs of solution at the off-grid 

points without requiring additional interpolation, was implemented as block method so as to obtain solutions at 

both step and offstep points. Numerical examples are presented to portray the applicability and the efficiency of 

the method. 
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I. INTRODUCTION 
 The solutions of second order Initial Value Problems (IVPs) of Ordinary Differential Equations 

(ODEs) have received much attention by researchers. Many of such problems may not be easily solved 

analytically, hence numerical schemes are developed to approximate the solution. The approach of reducing (1) 

to a system of two first order differential equations has been reported to increase the dimension of the problem 

and therefore result in more computation, [1]. [2], [3],[4], [5] to mention a few have attempted the solution of 

this kind of problem using LMMs without reduction to system of first order ODEs. Conventionally, implicit 

LMMs, when implemented in the predictor-corrector mode is prone to error propagation. This disadvantage has 

led to the development of block methods from linear multistep methods. Apart from being self-starting, the 

method does not require the development of the predictors separately, and evaluates fewer functions per step. In 

what now immediately follows, we shall develop a three-step point with Chebyshev polynomial as basis 

function. 

II. PROCEDURE 
 In this section, we shall consider the derivation of the proposed continuous three-step block method 

which will be used to generate the main method and other methods required to set up the block method. This we 

do by approximating the analytical solution of : 
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where f is a continuous function, with a Chebyshev polynomial in the form: 
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on the partition a = x0 < x1 < ... < xn < xn+1 < ... < xN = b of the integration interval [a, b], with a constant step 

size h, given by h = xn+1 - xn;  n = 0, 1, ..., N - 1. The second derivative of (2) is given by: 
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where x [a, b], the aj’s are real unknown parameters to be determined and r + s is the sum of the number of 

collocation and interpolation points. 

 

Conventionally, we need to interpolate at at least two points to be able to approximate (2) and, to make this 

happen, we proceed by arbitrarily selecting some step points, xn+v, v (0, 3), in (xn, xn+1) in such a manner that 

the zero-stability of the main method is guaranteed. Then (2) is interpolated at xn+i, i = 0, v and its second 

derivative is collocated at xn+i, i = 0 and 1, so as to obtain a system of equations which will be solved by 

Gaussian elimination method. 
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2.1  Derivation of Three-step Points 

 In this case, three-step points are introduced. Here, i = 2 so that , v1 = 0 and v2 = 1, the collocation 

point, r = 4 and the interpolation point, s = 2. 

     From (2), for r = 4 and s = 2, we obtain the polynomial of degree r + s - 1 as: 
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with its second derivative given by: 

      

5
''

0

( ) ( )j j

j

y x a T x


      (5) 

Substituting (5) into (1) gives: 
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Collocating (6) at xn+0, xn+1, xn+2, xn+3 and interpolating (4) at xn+0, xn+1  lead to a system of equations written in 

matrix form AX = B as follows: 
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Solving (7) by Gaussian elimination method yields the aj’s as follows: 
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Substituting the aj’s, j = 0(Error! Reference source not found.)5 into (4) yields the continuous three-step 

method in the form of a continuous linear multistep method described by the formula: 
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where αj’s and βj’s are continuous functions and are obtained as parameters: 
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where t =    . 

Evaluating (9) at x = xn+2 and xn+3, we obtain the discrete methods from (9) as: 
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The block methods are derived by evaluating the first derivative of (9) in order to obtain additional equations 

needed to couple with (11) and (12). 

Differentiating (9), we obtain: 
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Evaluating (13) at x = xn, xn+ 1 , xn+ 2 and xn+3, the following discrete derivative schemes are obtained: 

  

   (14) 

  

  

Equations (11), (12) and (14) are combined and solved simultaneously to obtain the following explicit results: 

 

 

 

  

  

 
 

III. THE BASIC PROPERTIES OF THE METHOD 
3.1 Order and Error Constant 

 The explicit schemes (11) and (12) derived are discrete schemes belonging to the class of LMM of the 

form: 
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Associated with (12) is the linear differential operator L defined by: 
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Expanding (13) by Taylor series, we have: 
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The LMM (15) is said to be of order p if C0 = C1 = C2 = . . . = Cp = Cp+1 = 0 and Cp+2 ≠ 0 is the error constant, 

see Lambert (1973).  According to this definition, the discrete schemes (11) and (12) have order p = (4, 4)
T
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3.2 Consistency of the Method 

The LMM (15) is said to be consistent if it is of order p ≥ 1 and its first and second characteristic polynomials 

defined as 
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Investigation reveals that the schemes (11) and (12) satisfied these conditions.  

3.3 Zero-Stability of the Method 

The LMM (12) is said to be zero-stable if no root of the first characteristic polynomial has modulus greater than 

one, and if every root of modulus one has multiplicity not greater than two, see Lambert (1973). 

The schemes (11) and (12) have been investigated to satisfy this definition. 

4. Numerical Examples 

Two test problems are considered here to examine the efficiency and accuracy of the method implemented as a 

block method. The absolute errors of the test problems are compared with existing methods. 

4.1 Problems 

Problem 1 
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4.2 Results 

Table 1: Showing the Exact Solutions and Absolute Error for Problem 1 

 

X Exact Solution Three-Step Points Error Error in [4] 

0.0025 -0.094140915761849 -0.094140915761848 4.163336342344337e-016 7.020D-14  

0.0050 -0.094532404142339 -0.094532404142338 9.436895709313831e-016 1.217D-13  

0.0075 -0.094924451608388 -0.094924451608386 1.582067810090848e-015 3.396D-12 

0.0100 -0.095317044390700 -0.095317044390696 -4.468647674116255e-015 8.122D-12 

0.0125 -0.095710168480981 -0.095710168480977 3.635980405647388e-015 1.453D-11 

 
 

Table 2: Showing the Exact Solutions and Absolute Error for Problem 2 

 

X Exact Three steps Error Error in [7] 

0.1 0.095470288185115 0.095471666666667 9.766814106484945e-006 3.7135900e-4 

0.2 0.183675922345822 0.183804444444444 1.831502902138738e-005 1.5836410e-3 

0.3 0.266950622579730 0.266726074074074 6.510124759606661e-005 3.4173760e-3 

0.4 0.347396099439354 0.386643055440329 1.024784019953984e-004 5.7170630e-3 

 

IV. CONCLUSION 
 In this paper, the derivation of continuous three-step method for numerical solution of second order 

IVPs of ODEs without reformulation to first order system has been considered. In TABLE 1, we compare  the 

block method of Adesanya et al while in TABLE 2, the predictor-corrector method of Adeniyi et al is compared. 

The results in both cases show that our new method is more efficient on comparison. Moreover, the desirable 

property of a numerical solution is to behave like the theoretical solution of the problem as this is obvious in 

TABLES 1 and 2. In the future paper, the scope of the paper shall be extended to hybrid three-step points. 
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